NIR-spectroscopy for bioprocess monitoring & control
نویسندگان
چکیده
Introduction The Quality by Design (QbD) approach shows significant benefit in classical pharmaceutical industry and is now on the cusp to a stronger influence on biopharmaceutical applications. Monitoring the critical process parameters (CPP) applying process analytical technologies (PAT) during biotechnological cell cultivations is of high importance in order to maintain a high efficiency and quality of a bioprocess. For parameters like glucose concentration, total cell count (TCC) or viability a robust online prediction is in many applications not yet possible. This gap can be closed with the help of NIR spectroscopy (NIRS), which provides quantitative prediction of single analytes in real-time. For accurate process control based on NIR spectroscopy, special care has to be taken while building the calibration model [1,2]. In cell cultivation almost all analytes are confounded and show large correlation coefficients. Therefore, partial least square (PLS) models are not able to discriminate between the signals of the different analytes. Especially, analytes like glucose or glutamine which are strongly confounded with cell growth need to be evaluated carefully as cell growth is the analyte causing the largest changes in NIR spectra throughout a cultivation run. Spiking experiments are the most efficient way in order to break correlations between critical analytes like glucose and other nutrients or TCC. This strategy should be followed in order to build robust calibration models without correlations [3,4]. Another very critical issue occurring in cell cultivation are batch-to-batch variations. As it is recommended in good modeling practice [5], for robust models it is crucial to use several complete batches for validation which are not part of the calibration set rather than cross validation [6].
منابع مشابه
Near Infrared Spectroscopic Monitoring and Control of a Whole-Cell Biocatalytic Process
Accurate and robust monitoring of product and reactants in a complex bioconversion stream is essential for the development of effective process control strategies. To monitor a microbially-catalysed Baeyer-Villiger bioconversion of a cyclic ketone to an optically pure lactone, a near infrared (NIR) spectroscopic method has been developed. The reaction, catalysed by cyclohexanone monooxygenase f...
متن کاملNear-infrared spectroscopy for bioprocess monitoring and control.
This article describes the calibration of a spectroscopic scanning instrument for the measurement of selected contaminants in a complex biological process stream. Its use is for the monitoring of a process in which contaminants are to be removed selectively by flocculation from yeast cell homogenate. The main contaminants are cell debris, protein, and RNA. A low-cost instrument has been develop...
متن کاملField detection of CO and CH4 by NIR 2f modulation laser spectroscopy
A novel compact fiber-coupled NIR system based on a DFB diode laser source is employed as a portable and sensitive gas sensor for trace detection of combustion pollutant molecules. We demonstrate the performance of such an NIR gas sensor by tracing the absorption lines of CO and CH4 using 2f-WMS technique at moderate temperature of T ~ 600°C in the recuperator channel of an industrial furnace...
متن کاملPrediction of Freshness Quality and Phosphate Residue of White Shrimp Products Using Near-Infrared Spectroscopy
Background: The manufacturing of frozen shrimp is an important industry for the economy of Thailand. The objective of this study was to use Near-Infrared (NIR) spectroscopy to determine the freshness quality, including Total Volatile Basic Nitrogen (TVB-N) and Water Holding Capacity (WHC) of white shrimp (whole and chopped shrimp) and phosphate residues of shrimp. Methods: Sixty white shrimp ...
متن کاملActivated sludge process monitoring through in situ near-infrared spectral analysis.
The application of near infrared (NIR) spectroscopy for industrial process monitoring is achieving increasing importance over the last twenty years. In fact, the real time monitoring capacity of NIR spectroscopy is a very important feature for process monitoring, prediction and control as it allows a fast evaluation of the state of the process. However, the application of NIR spectroscopy in wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2013